Combining Philosophers

All the ideas for Lynch,MP/Glasgow,JM, Christopher Peacocke and Shaughan Lavine

expand these ideas     |    start again     |     specify just one area for these philosophers


58 ideas

2. Reason / D. Definition / 13. Against Definition
Most people can't even define a chair [Peacocke]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Second-order set theory just adds a version of Replacement that quantifies over functions [Lavine]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
An 'upper bound' is the greatest member of a subset; there may be several of these, so there is a 'least' one [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
Collections of things can't be too big, but collections by a rule seem unlimited in size [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Those who reject infinite collections also want to reject the Axiom of Choice [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set is just the collection of functions from one collection to another [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was immediately accepted, despite having very few implications [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation says descending chains are of finite length, blocking circularity, or ungrounded sets [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Pure collections of things obey Choice, but collections defined by a rule may not [Lavine]
The controversy was not about the Axiom of Choice, but about functions as arbitrary, or given by rules [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
The 'logical' notion of class has some kind of definition or rule to characterise the class [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception of set wasn't suggested until 1947 [Lavine]
The iterative conception needs the Axiom of Infinity, to show how far we can iterate [Lavine]
The iterative conception doesn't unify the axioms, and has had little impact on mathematical proofs [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size: if it's the same size as a set, it's a set; it uses Replacement [Lavine]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A collection is 'well-ordered' if there is a least element, and all of its successors can be identified [Lavine]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic presupposes a set of relations already fixed by the first-order domain [Lavine]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Mathematical proof by contradiction needs the law of excluded middle [Lavine]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is nowadays (thanks to set theory) regarded as the study of structure, not of quantity [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Every rational number, unlike every natural number, is divisible by some other number [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
For the real numbers to form a set, we need the Continuum Hypothesis to be true [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a necessary condition for the convergence of a sequence [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
The two sides of the Cut are, roughly, the bounding commensurable ratios [Lavine]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Counting results in well-ordering, and well-ordering makes counting possible [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
The infinite is extrapolation from the experience of indefinitely large size [Lavine]
The theory of infinity must rest on our inability to distinguish between very large sizes [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / c. Potential infinite
The intuitionist endorses only the potential infinite [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
'Aleph-0' is cardinality of the naturals, 'aleph-1' the next cardinal, 'aleph-ω' the ω-th cardinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Ordinals are basic to Cantor's transfinite, to count the sets [Lavine]
Paradox: the class of all ordinals is well-ordered, so must have an ordinal as type - giving a bigger ordinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Paradox: there is no largest cardinal, but the class of everything seems to be the largest [Lavine]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory will found all of mathematics - except for the notion of proof [Lavine]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Modern mathematics works up to isomorphism, and doesn't care what things 'really are' [Lavine]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionism rejects set-theory to found mathematics [Lavine]
7. Existence / C. Structure of Existence / 3. Levels of Reality
A necessary relation between fact-levels seems to be a further irreducible fact [Lynch/Glasgow]
7. Existence / C. Structure of Existence / 5. Supervenience / c. Significance of supervenience
If some facts 'logically supervene' on some others, they just redescribe them, adding nothing [Lynch/Glasgow]
7. Existence / D. Theories of Reality / 6. Physicalism
Nonreductive materialism says upper 'levels' depend on lower, but don't 'reduce' [Lynch/Glasgow]
The hallmark of physicalism is that each causal power has a base causal power under it [Lynch/Glasgow]
12. Knowledge Sources / B. Perception / 1. Perception
Perceptual concepts causally influence the content of our experiences [Peacocke]
12. Knowledge Sources / B. Perception / 6. Inference in Perception
Perception has proto-propositions, between immediate experience and concepts [Peacocke]
15. Nature of Minds / B. Features of Minds / 1. Consciousness / f. Higher-order thought
Consciousness of a belief isn't a belief that one has it [Peacocke]
18. Thought / A. Modes of Thought / 6. Judgement / a. Nature of Judgement
Concepts are distinguished by roles in judgement, and are thus tied to rationality [Peacocke]
18. Thought / D. Concepts / 1. Concepts / b. Concepts in philosophy
Philosophy should merely give necessary and sufficient conditions for concept possession [Peacocke, by Machery]
Peacocke's account of possession of a concept depends on one view of counterfactuals [Peacocke, by Machery]
Peacocke's account separates psychology from philosophy, and is very sketchy [Machery on Peacocke]
18. Thought / D. Concepts / 2. Origin of Concepts / a. Origin of concepts
The concept 'red' is tied to what actually individuates red things [Peacocke]
18. Thought / D. Concepts / 3. Ontology of Concepts / a. Concepts as representations
If concepts just are mental representations, what of concepts we may never acquire? [Peacocke]
18. Thought / D. Concepts / 3. Ontology of Concepts / b. Concepts as abilities
Possessing a concept is being able to make judgements which use it [Peacocke]
A concept is just what it is to possess that concept [Peacocke]
Employing a concept isn't decided by introspection, but by making judgements using it [Peacocke]
18. Thought / D. Concepts / 3. Ontology of Concepts / c. Fregean concepts
A sense is individuated by the conditions for reference [Peacocke]
Fregean concepts have their essence fixed by reference-conditions [Peacocke]
18. Thought / D. Concepts / 4. Structure of Concepts / a. Conceptual structure
Concepts have distinctive reasons and norms [Peacocke]
18. Thought / D. Concepts / 4. Structure of Concepts / b. Analysis of concepts
An analysis of concepts must link them to something unconceptualized [Peacocke]
Any explanation of a concept must involve reference and truth [Peacocke]
18. Thought / D. Concepts / 4. Structure of Concepts / f. Theory theory of concepts
Concepts are constituted by their role in a group of propositions to which we are committed [Peacocke, by Greco]
19. Language / B. Reference / 1. Reference theories
A concept's reference is what makes true the beliefs of its possession conditions [Peacocke, by Horwich]
19. Language / C. Assigning Meanings / 4. Compositionality
Encountering novel sentences shows conclusively that meaning must be compositional [Peacocke]